
Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

SimCheck : An Expressive Type-system for
Simulink 1

Pritam Roy1 Natarajan Shankar2

University of California, Los Angeles1

SRI International2

April 14, 2010

1supported by NSF Grant CSR-EHCS(CPS)-0834810 and NASA
Cooperative Agreement NNX08AY53A

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

Simulink as a Model
Type Checking

Outline

1 Introduction

2 Model Translation to Yices

3 Type Annotation and Checking

4 Property Verification

5 Conclusion

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

Simulink as a Model
Type Checking

Simulink as Modeling Tool

Matlab/Simulink is very popular modeling language in the industry
Language of choice to design a complex embedded or control system
Easy to draw lines and boxes - drag and drop
A comprehensive set of function blocks

Figure: M7 Surgical Robot Arm Figure: Simulink Model of M7

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

Simulink as a Model
Type Checking

Simulink as Modeling Tool

Matlab/Simulink is very popular modeling language in the industry
Language of choice to design a complex embedded or control system
Easy to draw lines and boxes - drag and drop
A comprehensive set of function blocks

Figure: M7 Surgical Robot Arm Figure: Simulink Model of M7

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

Simulink as a Model
Type Checking

Simulink Semantics

A Simulink model is represented graphically by means of a number of
interconnected blocks.

Lines between blocks connect block outputs to block inputs and
represent data flow signals.

Blocks can be built from a large number of predefined library blocks,
which can be nested in an arbitrary manner,

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

Simulink as a Model
Type Checking

Simulink Semantics

Blocks may have states, which may consist of a discrete-time and a
continuous-time part.

The output of a block is computed by an output function, based on its
input and its current state and time.

An update function calculates the next discrete state.

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

Simulink as a Model
Type Checking

Why Type Checking is Important ?

type of a variable provide an abstraction of the data values the variable
can store

type checking : process of verifying and enforcing the constraints of
types

expressive type-checking catches most of the bugs eagerly (avoid
crashing during execution)

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

Simulink as a Model
Type Checking

Types in Simulink

basic types are Bool, signed and unsigned integer types, tuples, vectors
and matrices, and strings.

Default type is double

Ports in a block and connectors have types.

has a limited capability for checking type correctness.

no systematic design-by-contract capability for Simulink.

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

Simulink as a Model
Type Checking

Types in Simulink

basic types are Bool, signed and unsigned integer types, tuples, vectors
and matrices, and strings.

Default type is double

Ports in a block and connectors have types.

has a limited capability for checking type correctness.

no systematic design-by-contract capability for Simulink.

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

Simulink as a Model
Type Checking

What we need?

We need a capability that uses contracts to carry out

Type inference for basic types,

Annotate links with expressive types (over values, dimensions and units
of physical variables)

Generate test cases,

Capture interfaces and behaviors,

Monitor type conformance, and

Verify type correctness relative to such expressive types

The SimCheck type system/tool can be used to specify and verify these
requirements.

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

Simulink as a Model
Type Checking

What we need?

We need a capability that uses contracts to carry out

Type inference for basic types,

Annotate links with expressive types (over values, dimensions and units
of physical variables)

Generate test cases,

Capture interfaces and behaviors,

Monitor type conformance, and

Verify type correctness relative to such expressive types

The SimCheck type system/tool can be used to specify and verify these
requirements.

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

Simulink as a Model
Type Checking

SimCheck Framework

The whole package is built in Matlab language.

integrated the type checker/verifier inside the Matlab
environment editing customization file

Simulink files have mdl extensions

Used simulink APIs to obtain the parameters of blocks and
connectors

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

Yices
MDL2YICES

Outline

1 Introduction

2 Model Translation to Yices

3 Type Annotation and Checking

4 Property Verification

5 Conclusion

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

Yices
MDL2YICES

Yices - SMT Solvers

SMT is the problem of determining satisfiability of formulas modulo
background theories (e.g. linear arithmetic, arrays, data types, bit
vectors etc.)

Yices is an SMT Solver developed at SRI International.

The input language of the Yices language in the semantics of a divide
block:

(define Divide ::(-> real real real))
(define DivideIn1 :: real)
(define DivideIn2 ::(subtype (n :: real) (/= n 0)))
(define DivideOut :: real)
(assert (= DivideOut (Divide DivideIn1 DivideIn2)))

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

Yices
MDL2YICES

Basic Blocks

For example, Constant block is translated as

(define ConstantOut1time1 :: real)
(assert (= ConstantOut1time1 1))

Sum block is translated as

(define SumIn1time1 :: real)
(define SumIn2time1 :: real)
(define SumOut1time1 :: real)
(assert (= SumOut1time1 (+ SumIn1time1
SumIn2time1)))

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

Yices
MDL2YICES

Basic Blocks

For example, Constant block is translated as

(define ConstantOut1time1 :: real)
(assert (= ConstantOut1time1 1))

Sum block is translated as

(define SumIn1time1 :: real)
(define SumIn2time1 :: real)
(define SumOut1time1 :: real)
(assert (= SumOut1time1 (+ SumIn1time1
SumIn2time1)))

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

Yices
MDL2YICES

Memory Blocks

Memory with initial value 70 can be translated to two consecutive clock
cycles as follows:

(define MemoryOut1time1 :: real)
(define MemoryIn1time1 :: real)
(assert (= 70 MemoryOut1time1))
(define MemoryOut1time2 :: real)
(define MemoryIn1time2 :: real)
(assert (= MemoryOut1time2 MemoryIn1time1))

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

User Given Types
Unit Checking
Expressive Type Systems
Compatibility Checking
Test-case Generation

Outline

1 Introduction

2 Model Translation to Yices

3 Type Annotation and Checking

4 Property Verification

5 Conclusion

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

User Given Types
Unit Checking
Expressive Type Systems
Compatibility Checking
Test-case Generation

User Given Types

User can annotate the type constraints or constraints on the signals
Constraints can be written on the blocks or globally

Figure: Annotation BlockPritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

User Given Types
Unit Checking
Expressive Type Systems
Compatibility Checking
Test-case Generation

Unit Checking

For an adder with inputs signals x and s and output o, we obtain

(define dist(x) :: int)
(define dist(s) :: int)
(define dist(o) :: int)
(define x:: real)
(define s:: real)
(define o:: real)
(assert (= dist(x) dist(s)))
(assert (= dist(x) dist(o)))
(assert (= o (+ (* 254/10000 x) (* 1/100 s))))

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

User Given Types
Unit Checking
Expressive Type Systems
Compatibility Checking
Test-case Generation

Unit Checking

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

User Given Types
Unit Checking
Expressive Type Systems
Compatibility Checking
Test-case Generation

Dependent Types and Refinement Types

Refinement types : capture constraints on the signals to a function e.g.
odd integer, non-zero divisor

Dependent types : capture dependency between input ports or output
port and input ports

Figure: Thermostat Example with Dependent and RefinementTypes

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

User Given Types
Unit Checking
Expressive Type Systems
Compatibility Checking
Test-case Generation

Typechecking Incompatibility

Two components may have different input assumptions and output
guarantees

May not work together

If SMT solver returns UNSAT then there is no environment

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

User Given Types
Unit Checking
Expressive Type Systems
Compatibility Checking
Test-case Generation

Test Case Generation

For each signal s and constraint Ps(s) , we want to show that
¬Ps(s) ∧ ∧r 6=sPr(r).
Yices solver returns either a negative answer (unsat) or a positive
answer with a satisfying variable assignment.

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

Outline

1 Introduction

2 Model Translation to Yices

3 Type Annotation and Checking

4 Property Verification

5 Conclusion

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

Property Verification

Bounded Model Checking

1. transition(1, k + 1) = dump2yices(model, vBlocks, k)
2. ψ = ∨d∈{1,2,...,k+1}¬φd

3. check-sat(transition,ψ)

K-induction

1. transition(1, k + 1) = dump2yices(model, vBlocks, k)
2. ψ = (∧d∈{1,2,...,k}φd) ∧ ¬φk+1

3. check-sat (transition,ψ)

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

Property Verification

Bounded Model Checking

1. transition(1, k + 1) = dump2yices(model, vBlocks, k)
2. ψ = ∨d∈{1,2,...,k+1}¬φd

3. check-sat(transition,ψ)

K-induction

1. transition(1, k + 1) = dump2yices(model, vBlocks, k)
2. ψ = (∧d∈{1,2,...,k}φd) ∧ ¬φk+1

3. check-sat (transition,ψ)

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

Related Work
Future Directions
Conclusions

Outline

1 Introduction

2 Model Translation to Yices

3 Type Annotation and Checking

4 Property Verification

5 Conclusion

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

Related Work
Future Directions
Conclusions

Related Tools

Reactis : test generation and simulation of test cases including
embedded C code.

Mathworks SDV : test generation and prove and refute functional
properties.

CheckMate : analysis of properties of hybrid systems using a finite state
abstraction of the dynamics.

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

Related Work
Future Directions
Conclusions

Related Tools

HiLiTE : use of static analysis of input range for generation of
test-cases, detection of ambiguities and divide-by-zero errors,
robustness, and unreachable code.

Simulink-to-Lustre : translation for type inference on Simulink models
and the resulting Lustre output can be analyzed using model checkers.

Gryphon : a number of tools, including model checkers, for analysis of
Simulink/Stateflow models.

kind : bounded model checking, k-induction

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

Related Work
Future Directions
Conclusions

Future Directions

Interface types to capture temporal input-output behavior of Stateflow

Map the bounded integers to their fixed-point representations or bit
vectors.

Reason about Matlab functions blocks via static analysis

Cover other properties such as the robustness, error bounds for floating
point computations,

Verification of model/code correspondence through the use of test
cases

Translate Simulink models to SAL and HybridSAL for symbolic analysis

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

Related Work
Future Directions
Conclusions

Conclusions

Type system capture constraints, dimensions and units of signals, and
the relationships between signals.

Annotations expressed in the constraint language of Yices

Proof obligations translated to constraint solver

Obligations used to check compatibility w.r.t. dimensions, generate
counterexamples and test cases, and to prove type correctness.

Yices performs BMC and k -induction to refute or verify type invariants.

Eventual goal is to use this capability to certify the correctness of such
systems and monitor type conformance

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction
Model Translation to Yices

Type Annotation and Checking
Property Verification

Conclusion

Related Work
Future Directions
Conclusions

Thank You

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

	Introduction
	Simulink as a Model
	Type Checking

	Model Translation to Yices
	Yices
	MDL2YICES

	Type Annotation and Checking
	User Given Types
	Unit Checking
	Expressive Type Systems
	Compatibility Checking
	Test-case Generation

	Property Verification
	Conclusion
	Related Work
	Future Directions
	Conclusions

